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Let D be the open unit disk in the complex plane and let C be its boundary, the

unit circle. If £ e C, then by an arc at £ we mean a simple arc y with one endpoint at

£ such that y —{£}sF. In this paper we use the term boundary function in the

following sense. If/is a function defined in D and <f> is a function defined on a set

SS C, then we say that <b is a boundary function for/if, and only if, for each £ e 5

there exists an arc y at £ such that/(z) approaches </>((.) as z approaches £ along y.

It is known that if <f> is a boundary function for a continuous function, then </>

can be made into a function of Baire class 0 or of Baire class 1 by changing its

values on at most a countable set of points [4, Theorems 2, 3], [6, Theorem 6],

[8, Theorem 3]. Hence •/> is of Baire class at most 2. Conversely, if <f> is a function

defined on C such that <h can be made into a function of Baire class 0 or 1 by chang-

ing its values on at most a countable set, then </> is a boundary function for some

continuous function [1, Theorem 8]. Bagemihl and Piranian gave an example

[1, Theorem 6] of a harmonic function having a boundary function defined on C

that is not of Baire class 0 or 1, and they asked [1, Problem 5] whether there exists

a bounded harmonic function having a boundary function defined on C that is not

of Baire class 0 or 1. In the present paper we answer this question by constructing

the desired function. We then show that, despite this example, a boundary function

for a bounded harmonic function always resembles a function of Baire class 0 or

1 in this respect: its set of discontinuity points is of the first category.

We say that a function/defined in D has the asymptotic value a ata point £ e C

if there exists an arc y at £ such that/(z) approaches a as z approaches £ along y.

We say that/has general limit a at £ if/(z) approaches a as z approaches £ with

no restrictions other than that z e D.

Let Pr(ff) denote the Poisson kernel; that is,

I —r2
p (0) =_t—'_

A)      l+r2-2rcosd

We list three facts that we will use about the Poisson integral. These facts are

presumably well known, and in any case can be easily derived from the discussion

on pp. 32-38 of [3].
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(i) If </> is a bounded measurable real-valued function on C, then the Poisson

integral of (/>, defined in D by

f(reÍ6) = ^r\\Wt)Pr(6-t)dt,

is a bounded harmonic function in D.

(ii) If 4> is a measurable function defined almost everywhere on C, if

I |fl<?")| dt < co,

and if </> is defined and continuous at a point £0 6 C, then the Poisson integral of

4> has general limit <£(£0) at £0.

(iii) If/ is harmonic in D, and if, for some p> 1,

{/:
|/(reif)|p dt : r e [0, 1)

is a bounded set of numbers, then the radial limit of/exists at almost every point

of C, and if </> is the function defined almost everywhere on C by this radial limit,

then J1n \4>(eu)\ dt <oo and/is the Poisson integral of </>.

Before constructing our function, we prove a simple lemma.

Lemma. Let {/„}™=i be a sequence of pairwise disjoin! closed arcs of C, each arc

containing more than one point. Let {On}"=1 be a sequence of Jordan domains in D

satisfying the following conditions.

ñnnc = /„.

n # m => Q„ n Om zj empty,

diameter Dn —> 0   as n^ao.

Let I* denote the interior (relative to C) of /„. F«e« eac« ^oz'«z o/ C— (J™=i F* w

accessible by a simple arc in D — (Jn= i ^n-

Proof. Let Tn = (boundary of Qn)-/n*. Let

(CO \ 00

c-U /n*u U rn.
n=l        /        n=l

Let «n be a homeomorphism of /„ onto Tn that fixes each endpoint of /„. Define

functions <f> and <£p (/>= 1, 2, 3,...) on C by setting

00

m = 1       if £ e C- u /»,
7t=l

tfO = AB«)   if£e/n,

¿p(0 = S        if 5 e c- Û /»,
n = l

¿,(9 = "n(0   ¡f I e /„ and 1 S » £ />.
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Obviously </>p is continuous. Moreover,

|^(0-^(0|   =0 if It     0     In,
n = p+l

\M0~<K0\ S diameterof Q„ if£e/n and nip+l.

Since (diameter of fln)-^-0 as n —> oo, it follows that </>v-></> uniformly on C,

so that <f> is continuous. It is clear that </> is one-to-one and onto T, and since the

inverse of a one-to-one continuous function on a compact set is always continuous,

it follows that <f> is a homeomorphism between C and T. Thus T is a Jordan curve.

It is not hard to show that each point of Qn can be joined by an arc not meeting T

to some point outside of D, so each i\ is contained in the unbounded domain

determined by T. Therefore, if F denotes the bounded domain determined by V,

then FsF-|J™=1 Qn. But, by the corollary on p. 164 of [7], each point of T is

accessible by a simple arc in B, so the lemma is proved.

If S is a set of real numbers, let expi S denote {eu : t e S}. If S and F are sets of

real numbers, let

A(S, T) = inf {\s — t + 2mTr\ : s e S, t e T, and m is an integer}.

If y is a real number, let A(y, F) mean A({_y}, F).

Let {pn}n = i he a countable dense subset of (—*, w). We inductively construct a

sequence of natural numbers {n(k)}k = x and a sequence of real numbers {ek}k = x in

such a way that the following conditions are satisfied.

I. 0<ekSl/2k + 1.

II.   —n< pnM - tteI/2 < pnm + tteI/2 < it.

Set
a(k) = pnm-"4/2,       ß(k) = pn(.k) + ™k/2-

Then we want

III. h*k=>[a(h), ß(h)] n [a(k), ß(k)] is empty.

IV. ekS{&([a(h), ß(h)], [a(k), ß(k)])}i/2a whenever IShSk-l.

V. Ph e (Jf=i Hi), ß(Q] whenever lShSn(k).

We construct the sequences as follows. Let «(1)= 1 and choose ex so as to satisfy

I and II. Then III, IV, and V are trivially satisfied at this point. Now suppose the

first p terms of the sequences have been constructed so that I through V are satisfied

for ISkSp, IShSp. Then we construct the terms for/7+1 by taking n(p+l) to

be the least integer for which

P«,+i,tÙ W),pV)],
i = X

and choosing ep+x >0 small enough so that

,    <—!—
p+1 = 2P+1+1

77    2 i77    2

— rr< Pmp+I) — ̂  bp + x < Pn(p+x) + Z ep + x < "■

^4 + x+^+x ú i min A(Pn(p + 1), Hk),ß(k)}).
¿ k-èP
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It is easy to check that I through V are then satisfied for ISkSp+l, IShSp+l;

so the sequences can be constructed in accordance with I through V.

Let Xn denote the characteristic function of expi [a(«), j8(«)] and let x be the

characteristic function of

U expi [a(n), ft«)].
n = l

Then X = ln=iXn- Set

fn(ré°) = ^\n(e«)Pr(B-t)dt

and set

f(rP*) = ^\(elt)Pr(6-t)dt.

Then / is a bounded harmonic function in D. By the Lebesgue monotone con-

vergence theorem,/=2r?=i/n (pointwise).

Let

Q„ = {rée :l-en< r < 1 and A(0, [«(«), ß(n)]) < (1-r)1'4}.

It is easily seen that ü„ is a lordan domain in D and that fln n C=expi [a(«), ß(n)].

By using IV one can easily show that F2n n Qm is empty when n^m.l assert that

(1) 0 S /„(z) S £„   whenever zeD-ün.

That/„(z)^0 follows from the fact that Pr(B) is nonnegative. To prove the other

inequality, take any rew e D — Q.n. Then either rSl—cn, or else r>l—en and

A(0, [a(n), ß(n)])^(l -r)1'4. First suppose rS l-en. Then

1    í*í(n) 1 — r2

UreW) = 2lr Ja(n) (l-F)2 + 2r(l-cos(0-f)) *

1    /■«»>   l_ra
< — -dt =

- 1 a 1±£ < Í 2I-

jS(/i)-a(n)l-f-r

1-r

On the other hand, suppose that r> 1 -«, and A(0, [a(«), ß(ri)])^(l -r)111. Then,

for each te [<*(«), ß(h)] and each integer «z, we have |0 — f+2«i7r|^(l— r)1/4, and

hence, since r>\—\,

\(\_r\lli]2     |Y1_ r\iii-\i
cos(0-f) ^ cos (1-r)1'" S l-l(    27   J + ^i-jf—

^ l-iV(l-r)   (fe [«(«),/?(«)]).
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Therefore
]   f-0<n> 1 — r2

fnireW) = Irr Ja(71) (\-r)2 + 2r(l-cos(d-t)) dt

<-fB(n) l—r2

(l-r)2 + \r^(l-r)dt

1   a       (l+r)(l-r)        < _1   a   2(l-r)
=   X £n 71-so   .    ■-TT.-T   ^   -  C

2 n(l-r)2 + |rV(l-r) = 2 "W(l-r)

= £"ím^)-EW(l~r)-
Thus

(2)   fn(re«) S enV(l-r)   when r > \-en   and    A(0, [«(«), ß(n)]) i (1-r)1'*.

Inequality (2) completes the proof of (1), and, in addition, it shows that

fÁz) approaches 0 as z = rew approaches any point of C along any arc that

does not meet Dn.

Now, x is continuous on expi (<*(«), ß(n)), so (by (ii))/has general limit 1 at each

point of expi (<*(«), ß(n)). From this fact it is easy to deduce that there exists an arc

at each of the points eia(n\ emn) along which/approaches 1. Thus/has the asymp-

totic value 1 at each point of expi [a(«), /?(«)].

Take any £ e C—{Jñ=x expi («(«), ß(n))- By the lemma, there exists an arc y at

£ that does not meet any of the domains Q.n. By (1), and the fact that enS l/2n+1,

i/(z)i s 2 i/»(*)i+ 2 i/-(*)i

=  Z l/n(z)l+oïTTT   whenever ze y.
n = l L

By (3), each fn(z ) approaches 0 along y, so (4) shows that

lim sup   |/(z)| S 2ÏTTT

Since m can be arbitrary, f(z) approaches 0 along y. Thus / has the asymptotic

value 0 at each point of

00

C- (J expi («(«), jS(«)).
n = l

We note that/has both the asymptotic values 0 and 1 at each of the points emn),

emn), so that these points are ambiguous. If we set

#0=1,       i e Ü expi («(«), ß(n)),
n = l

</>($ = 0,       £ e C- 0 expi [«(«), /?(«)],
n = l

<b(Q = 1,       £ = <?<«">   for some«,

<£(£) = 0,       £ = emn)   for some n,
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then </> is a boundary function for/ so it only remains to prove that </> is not of

Baire class 0 or 1. Let

A = {eilW : « = 1, 2, 3,...},       B = {emn) : « = 1, 2, 3,...}.

It follows from V that each pn is in {Jñ=x K«), ß(n)], so (J"=i exP> ta(M)> ß(n)] iS

dense in C. From this fact, and the fact that the closed arcs expi [<*(«), ß(n)] are

pairwise disjoint, it is easy to deduce that A and B are each dense in A u B, and

that Akj B has no isolated points. Thus Cl (A u B) is a perfect set. But </> takes

the value 0 at each point of A and the value 1 at each point of B, so the restriction

of </> to Cl (A u B) can have no point of continuity. By the famous theorem of

R. Baire [2, p. 88] </> cannot be of Baire class 0 or 1.

Theorem. Let f be a harmonic function in D such that, for some p> 1,

^Jf(re<°)\p d6 : r e [0, l)j

is a bounded set of numbers. Let A be the set of points on C at which f has an asymptotic

value, and let G be the set of points on C at which the general limit off exists. Then

A—G is a set of the first category.

Proof. Let 5 be the set of points on C at which the radial limit off exists. Then

S^A, C—S has measure 0, and, if we define </r(£) to be the radial limit off at £

for each le S, then/is the Poisson integral of </>. We can extend <// to a boundary

function <fix off that is defined on A. By the theorem on boundary functions for

continuous functions, there exists a function </> on A that is of Baire class 0 or 1

and differs from t/>x on at most a countable set. But then, since <£(£) = i/i(C) for

almost every l, fis the Poisson integral of </>. By the version of Baire's theorem on

pointwise limits of continuous functions that is stated in Kuratowski's book

[5, p. 301] (this reference was provided by the referee), there exists a set K<=A such

that A — K is of the first category and </> is continuous at each point of K. By (ii)

and (iii), K^G, so A — G is of the first category.

Corollary. Fef fibe a harmonic function in D such that, for some p>l,

{j"jfi(rP0)\"d9:re[0,l)j

is a bounded set. Let </> be a boundary function for fi defined on a set EÇ.C. Then the

set of discontinuity points (in E) of</> is of the first category relative to C.

Proof. Obviously </> is continuous at each point of E where the general limit off

exists.

The same results hold for analytic functions, as can be seen by applying the above

theorem and corollary to the real and imaginary parts. The example of Bagemihl
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and Piranian [1, Theorem 6] shows that in the above theorem and corollary the

hypothesis on the integrals

f   \f(re>°)\» d6

cannot be omitted.
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